The big idea: Find consumer pain points from reddit to validate or invalidate your idea.
1. Data Collection with Apify Actor
- Use the Apify Actor
harshmaur/reddit-scraper-pro
to scrape posts and comments from target subreddits. This actor allows you to specify subreddits, post limits, and comment depth. - Steps:
- Sign up for an Apify account and get your API token from the Apify Console.
- Configure the actor with parameters like subreddit name, number of posts, and comment scraping options.
- Run the actor via Apify’s API or console and retrieve the output (JSON format).
- Example Python code to run the actor and fetch data:
- Notes:
- Ensure compliance with Reddit’s terms and Apify’s usage policies.
- The actor’s output includes fields like
title
,selftext
, andcomments
. Check the actor’s documentation for additional fields (e.g., timestamps, upvotes). - Adjust
maxPosts
andmaxComments
based on your needs and Apify plan limits.
import requests
import pandas as pd
# Apify API setup
API_TOKEN = 'YOUR_APIFY_API_TOKEN'
ACTOR_ID = 'harshmaur/reddit-scraper-pro'
url = f'<https://api.apify.com/v2/acts/{ACTOR_ID}/run-sync-get-dataset-items>'
# Actor input configuration
input_config = {
'subreddits': ['target_subreddit'], # Replace with your subreddit
'maxPosts': 1000, # Adjust as needed
'maxComments': 100, # Max comments per post
'sort': 'top', # Options: hot, new, top, etc.
'time': 'all' # Options: hour, day, week, month, year, all
}
# Run actor and get data
response = requests.post(
url,
json=input_config,
headers={'Authorization': f'Bearer {API_TOKEN}'}
)
data = response.json()
# Convert to DataFrame
posts = []
for item in data:
posts.append({
'title': item.get('title', ''),
'selftext': item.get('selftext', ''),
'comments': [comment.get('body', '') for comment in item.get('comments', [])]
})
df = pd.DataFrame(posts)
df.to_csv('reddit_data.csv', index=False)
# Actor Input
{
"crawlCommentsPerPost": true,
"includeNSFW": false,
"maxCommentsCount": 0,
"maxCommentsPerPost": 0,
"maxCommunitiesCount": 0,
"maxPostsCount": 0,
"proxy": {
"useApifyProxy": true,
"apifyProxyGroups": [
"RESIDENTIAL"
],
"apifyProxyCountry": "US"
},
"searchComments": true,
"searchCommunities": false,
"searchPosts": true,
"searchSort": "new",
"searchTime": "year",
"startUrls": [
{
"url": "https://www.reddit.com/r/airbnb_hosts/",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/vrbohosts",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/AirBnBHosts/",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/ShortTermRentals/",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/askhotels/",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/PropertyManagement/",
"method": "GET"
},
{
"url": "https://www.reddit.com/r/hostaway/",
"method": "GET"
}
]
}
2. Data Preprocessing
- Clean the scraped data as before to prepare it for analysis.
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
def preprocess_text(text):
tokens = word_tokenize(text.lower())
tokens = [lemmatizer.lemmatize(token) for token in tokens if token.isalnum() and token not in stop_words]
return ' '.join(tokens)
df['cleaned_text'] = df['selftext'].apply(preprocess_text) + ' ' + df['comments'].apply(lambda x: ' '.join([preprocess_text(c) for c in x]))
3. Extract Consumer Pain Points
- Sentiment Analysis: Identify negative sentiment to pinpoint pain points.
- Topic Modeling: Use LDA to cluster negative texts into pain point topics.
- Keyword Extraction: Extract key phrases with
KeyBERT
.
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
df['sentiment'] = df['cleaned_text'].apply(lambda x: analyzer.polarity_scores(x)['compound'])
negative_texts = df[df['sentiment'] < -0.2]['cleaned_text'] # Negative sentiment threshold
from gensim import corpora
from gensim.models import LdaModel
texts = [text.split() for text in negative_texts]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15)
topics = lda_model.print_topics()
for topic in topics:
print(topic)
from keybert import KeyBERT
kw_model = KeyBERT()
keywords = negative_texts.apply(lambda x: kw_model.extract_keywords(x, keyphrase_ngram_range=(1, 3), stop_words='english'))
print(keywords)
4. Identify and Analyze "How" Questions
- Detect "How" Questions:
- Extract Meaning/Topic:
- Keyword Extraction:
- Topic Modeling:
- Intent Classification (Optional):
import re
def is_how_question(text):
pattern = r'^(?i)\\s*how\\s+(do|can|to|does|did|are|is|was|were|should|would|could)\\b.*\\?$'
return bool(re.match(pattern, text.strip()))
df['is_how_question'] = df['selftext'].apply(is_how_question) | df['comments'].apply(lambda x: any(is_how_question(c) for c in x))
how_questions = df[df['is_how_question']][['title', 'selftext', 'comments']]
how_comments = []
for index, row in how_questions.iterrows():
for comment in row['comments']:
if is_how_question(comment):
how_comments.append({'post_title': row['title'], 'question': comment})
how_questions_df = pd.DataFrame(how_comments)
how_questions_df['cleaned_question'] = how_questions_df['question'].apply(preprocess_text)
how_questions_df['keywords'] = how_questions_df['cleaned_question'].apply(
lambda x: kw_model.extract_keywords(x, keyphrase_ngram_range=(1, 3), stop_words='english')
)
texts = [text.split() for text in how_questions_df['cleaned_question']]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary, passes=15)
topics = lda_model.print_topics()
for topic in topics:
print(topic)
from transformers import pipeline
classifier = pipeline('zero-shot-classification', model='facebook/bart-large-mnli')
candidate_labels = ['troubleshooting', 'seeking advice', 'product inquiry', 'process inquiry']
how_questions_df['intent'] = how_questions_df['question'].apply(
lambda x: classifier(x, candidate_labels)['labels'][0]
)
5. Summarize and Visualize
- Pain Points Summary:
- How Questions Summary:
- Visualization (Pain Points):
- Visualization (How Questions):
pain_points = pd.DataFrame({
'Pain Point': ['Issue 1', 'Issue 2'],
'Description': ['From topic modeling', 'From keywords'],
'Frequency': [100, 50]
})
pain_points.to_csv('pain_points_summary.csv', index=False)
how_questions_df[['post_title', 'question', 'keywords', 'intent']].to_csv('how_questions_summary.csv', index=False)
{
"type": "bar",
"data": {
"labels": ["Product Issues", "Customer Service", "Pricing", "Delivery", "Other"],
"datasets": [{
"label": "Frequency of Pain Points",
"data": [150, 100, 80, 60, 30],
"backgroundColor": ["#FF6384", "#36A2EB", "#FFCE56", "#4BC0C0", "#9966FF"],
"borderColor": ["#FF6384", "#36A2EB", "#FFCE56", "#4BC0C0", "#9966FF"],
"borderWidth": 1
}]
},
"options": {
"scales": {
"y": {
"beginAtZero": true,
"title": {
"display": true,
"text": "Number of Mentions"
}
},
"x": {
"title": {
"display": true,
"text": "Pain Point Categories"
}
}
},
"plugins": {
"legend": {
"display": false
},
"title": {
"display": true,
"text": "Consumer Pain Points from Reddit Data"
}
}
}
}
{
"type": "pie",
"data": {
"labels": ["Troubleshooting", "Seeking Advice", "Product Inquiry", "Process Inquiry"],
"datasets": [{
"data": [40, 30, 20, 10],
"backgroundColor": ["#FF6384", "#36A2EB", "#FFCE56", "#4BC0C0"],
"borderColor": ["#FF6384", "#36A2EB", "#FFCE56", "#4BC0C0"],
"borderWidth": 1
}]
},
"options": {
"plugins": {
"legend": {
"position": "right"
},
"title": {
"display": true,
"text": "Distribution of 'How' Question Intents"
}
}
}
}
6. Cross-Reference Pain Points and How Questions
- Link "how" questions to pain points based on keywords.
how_questions_df['related_pain_point'] = how_questions_df['keywords'].apply(
lambda x: next((pp for pp in pain_points['Pain Point'] if any(kw[0] in pp.lower() for kw in x)), 'None')
)
7. Ethical Considerations
- Respect Reddit’s terms and Apify’s usage limits.
- Anonymize user data and avoid storing personally identifiable information.
- Ensure compliance with data privacy regulations.
Tools Needed
- Apify: Account and API token for
harshmaur/reddit-scraper-pro
. - Python Libraries:
requests
,pandas
,nltk
,gensim
,keybert
,vaderSentiment
,transformers
,re
. - Setup: Install libraries via
pip install requests pandas nltk gensim keybert vaderSentiment transformers
.
Notes
- The Apify Actor simplifies scraping compared to PRAW by handling rate limits and providing a structured JSON output. However, it requires an Apify subscription for large-scale scraping.
- Check the actor’s documentation for additional parameters (e.g., filtering by date or flair).
- Adjust LDA topic counts and regex patterns based on your subreddit’s content.
- If you have a specific subreddit or dataset, share details for a tailored approach.
- I can search X for real-time validation of pain points or "how" questions if you provide a topic.